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Abstract
African swine fever virus (ASFV) is the cause of a highly contagious and fatal disease in domestic swine,
but no vaccine or effectivemedicine is available so far, therefore, looking for a novel and effective anti-
ASFV agent is a very imperativemission. Silver nanoparticles (SNPs) have been recently emerged as
novel antiviral agents against numerous viruses, but, their antiviral activity against ASFVhas not been
investigated. In this study, the antiviral ability of SNPs against ASFVwas reported. Themicrobial
contamination in the pig housewas significantly reduced by spraying the SNP solution 25 ppm. SNP
solutionwith the concentration of 0.78 ppmdoes not show any toxicity to porcine alveolar
macrophage cells; while completely inhibits ASFV at the titer of 103HAD50. This study confirms that
SNPs have a highly antiviral ability against ASFV and is a promising disinfectant that can be used to
prevent theASFV transmission.

1. Introduction

African swine fever virus (ASFV) is amember of theAsfivirus genuswithin theAsfarviridae family, a double-
strandedDNAviruswith a complex structure in an icosahedralmorphology [1]. ASFV causes a viral disease of
swinewith a very highmortality in domestic pigs, while it is asymptomatic in the natural suid reservoir hosts.
The virus can be transmitted via direct contact with infected animals, by the bites of infected arthropods,
particularly soft ticks of theOrnithodoros genus, and via contact withmaterials or object contaminatedwith
virus such as uncookedmeat, blood orfluid from infected pigs [2–4]. The virus is persistent in blood and tissues
after deathmake it easily to be transmitted via pork product transportation. The virus can be found in all
secretions and excretions, particularly in the oronasal fluid. Airborne transmission also occurs in a pig house [3].
The outbreak of the diseasemay cause a significant economic consequence for the affected region, vaccination is
the best controlmeasure, but, unfortunately, there is no vaccine commercially available so far. The vaccine
development has been deterred by large gaps in the understanding of ASFV infection, immunity, and the
mechanismbywhich the virusmodulates the host response to infection [5].Without a vaccine against ASFV,
early diagnosis and effective sanitarymeasures are very important strategies to eliminate the disease in the
affected area.

Since there is no vaccine available, the implementation of biosecuritymeasures is still the key for the disease
control and prevention. Besides the strict regulations for animal and animal product transportation, the pork-
relatedwastemanagement, and the infected area surveillance, an effective disinfectionmeasure plays a very
important role in controlling the disease spread [6–8]. ASFV is inactivated by pH<3.9 or>11.5 and some
traditional disinfectants as calciumhydroxide, hypochlorite, formalin, ortho-phenylphenol, Glutaraldehyde
and iodine compounds [6, 9]. The traditional disinfectants usually pose some disadvantages such as bad smell,
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quick loss of antiviral activity, and carcinogenic potential; therefore, only several disinfectants are recommended
by the Environmental ProtectionAgency in theUnited States of the use in the combat against ASFV [9].

Recently, significant effort has been spent tofindmore effective antiviral agents, particularly the naturally
originated ones, in the hope to develop an effective drug to treat the disease or antiviral agent for disinfection
[5, 10, 11]. Resveratrol andOxyresveratrol produced by plants (found in skin of grape, blueberries, raspberries,
and peanuts) in response to biotic and abiotic stress can inhibit viral infection by disrupting cellular functions
[1]. Genistein exhibits themost potent anti-ASFV-Ba71V activity with 3.8 log reduction in the viral titer at a
concentration of 50 mMand 8 hpi [12]. The antiviral activity of Genistain onASFVBa71V strain is determined
by several ways including impairing the viral DNA synthesis, inhibiting post-entry stages of ASFV life cycle, and
inhibiting the activity of ASFV type II topoisomerase enzyme. The sulfated polysaccharides can inhibit the virus
adsorption on host cell [13]. Apigenin, a natural flavonoid found inmany plants can inhibit ASFV-specific
protein synthesis and viral factory formation inducing 99.99%ASFV yield reduction by adding at 1 h post-
inoculation [14]. Fluoroquinolones was found to impact on the viral DNA replication andASFVprotein
synthesis that disrupting the viral infection [15]. A class ofHDAC inhibitors can abolish ASFV-Ba71V
replication and the late protein synthesis [16]. Even though, extensive attempt has been spent, no effective drug
is commercially available for disease treatment; therefore, it is still a challenge tofind effective disinfectants with
highly antiviral ability.

Silver nanoparticles (SNPs) have beenwidely used for as a disinfectant in various applications fromdaily
hygiene tomedication [17–21]. Recently, nanomaterials including silver nanoparticles have emerged as a novel
class of therapeutic agents that can inhibit the viral replication [22–24]. It is believed that SNPs, particularly
particles with diameters below 10 nm, can interact with active sulfur groups in gp120 glycoprotein knobs
inducing the inhibition of the of human immunodeficiency virus (HIV-1) infection [25–27] and a similar
interaction could be found in herpes simplex virus type 1 (HVS-1) [28], H1N1 influenzaA [29–31], andH3N2
influenza viruses [32]. SNPs aremore potent than gold nanoparticles, but do not show acute cytotoxicity for
Hut/CCR5 and humanperipheral bloodmonocular cells, while inhibitHIV-1 replication [33]. The stabilizer
used for SNPs synthesis also influences on their antiviral activity; a higher antiviral activity against RSV can be
receivedwhen SNPs stabilized by curcumin in comparedwith citric acid [34]. Following theHIV-1, it has been
demonstrated that SNPs can interact and inhibitmany other types of viruses which cause human viral diseases
such asHVS-1 and 2 [28, 35], hepatitis B [36], respiratory syncytial virus (RSV) [37], H1N1 influenzaA [29, 31],
andH3N2 influenza [32], human parainfluenza type 3 [38], poliovirus [39], and adenovirus type 3 [40]. Several
studies have investigated the antiviral activity of SNPs against viral disease in animals and indicated that SNPs
can effectively inhibit Tacaribe virus in bats [41], infectious bursal disease virus caused gumboro disease in
chicken [42] and transmissible gastroenteritis virus (TGEV) that can cause severe diarrhea in pigs [43]. A SNP-
modified grapheme oxide also proved highly antiviral ability against porcine reproductive and respiratory
syndrome virus (PRRSV) known as blue-ear pig disease and porcine epidemic diarrhea virus (PEDV) [44].

Thewidespread of ASFVdisease occurred in Europe, China, and several other countries causes a great
economic loss and threat to theworldwide food security [45–52], however, the disease control and prevention
are still based on the biosecuritymeasures due to the lack of vaccine and treatment drug. Thus, a demand for an
effective antiviral agent tofight against the disease widespread is very high and imperative. SNPs have posed
highly antiviral activity on numerous viruses, but, their antiviral ability against ASFVhas not been investigated.
Therefore, in this study, the antiviral activity of SNPs against ASFVwill be examined to evaluate their potential
use in the control of ASFVdisease transmission.

2. Experimental

2.1.Materials and ethic statement
SodiumRPMI 1640 (1X), Anti-Anti (100X) antibiotic, and Fetal bovine serumwere provided byGibco. BHI,NA
and plate count agarmediumwere purchased fromSigmaAldrich. Silver nitrate (AgNO3, purity>99%) and
sodiumborohydride (NaBH4, 99%)were received fromMerck. Acetic acid in practical grade purity was
obtained fromCantoChemical.β-chitosanwas provided by a local supplier. All experiments with live ASFV
were carried out in aKey laboratory for veterinary biotechnology, VietnamNational University of Agriculture.
This study compliedwith the ARRIVE guidelines andwas conducted in strict accordancewith theUK animals
(scientific procedures)Act, 1986 and associated guidelines, EUDirective 2010/63/EU for animal experiments.

2.2. Silver nanoparticle synthesis
SNPswere synthesized by a chemical reductionmethod as described elsewhere [53]. In a typical experiment,
20 ml of chitosan solution 10 000 ppmas a stabilizer wasfirst added to a 1000 ml beaker containing 180 ml of
distilledwater under stirring condition at a rate of 300 rpm.After the solution becomes homogenous; about
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10 min of continuous stirring, 250 ml of AgNO3 solution 1000 ppmwas added and themixturewas stirred at the
same rate for 1 h. The experiment was then continued by the increase in stirring rate to 500 rpm and the addition
of 200 ppmNaBH4 solution (20 ml) as a reductant by dropwisemethod. As soon as theNaBH4 solutionwas
dropped, the solution in the beaker turned yellow and became darkened asmore reductants were added. The
experiment finished as the addition ofNaBH4 completed. The SNP solution obtainedwas transferred to brown
sample bottle and kept at room condition for later investigations.

2.3.Disinfection study
Disinfection ability of SNPswas investigated in the lab using Salmonella and in pig house using the index of
microbial air contamination as indicators, respectively. For the antibacterial test in the lab, Salmonellawas first
grownby adding 100 μl of stock into BHImedium and incubated for 6 h at 37 °C following by centrifugation to
separate supernatant. The bacterial cell pellet was then dispersed in sterilized distilledwater to obtain a
Salmonella suspension for later use. The Salmonella suspension (0.5 ml)was subsequentlymixedwith 0.5 ml
SNPs solution having different concentrations from0.025 to 250 ppm in a 1.5 ml tube. After incubation at 37 °C
for 1 h, the suspension (100 μl)was taken and dilutedwith sterilized distilledwater by serial ten-fold dilutions
and then 100 μl of each dilutionwas extracted and streaked onNAplate, incubated for 24 h at 37 °C for bacterial
colony count. The control experiment was conducted using the samemethod but the sterilized distilledwater
was added instead of SNPs solution.

The number of bacteria in the samplewas calculated using equation (1).

( )
( )=

+
N

C

V n n d0.1
1

1 2

where, N is the total number of bacteria in amL (CFU/mL), C is total colony counted on the plates of two
consecutive dilutions, V is the volume of sample streaked on each plate, n1, n2 are the number of plates for the
first and second dilution, respectively, and d is the dilution factor of thefirst dilution.

The index ofmicrobial air contamination in pig housewas investigated using a passivemethod called settle
platemethod. Accordingly, PCAmedium containing petri plates (9 cm in diameter)were placed in four corners
and center of pig house at the height of 40 cm from floor and 1 maway fromwalls or obstacle and exposed to air
for 10 minThe experiment beganwith the site preparation inwhich the floorwas cleaned bywater and left until
it dried for the settle plate test.When the floor got dried, the control settle plate test was conducted by opening
the petri plates for 10 min, afterward; the SNP solutionwith concentration of 25 ppmwas sprayed throughout
thefloor surface and on thewall. As thefloor got dried against, another settle plate test was conducted by
opening the plates for 10 minAfter collecting, the plates were sealed to prevent the post contamination and
incubated for 24 h at 37 °C for bacterial colony count. The total aerobicmicrobes in a cubicmeter of air were
calculated according to equation (2).

· ·
·

( )=X
A

S K

100 100
2

where, X is total number of bacteria in a cubicmeter, A is an average number of bacteria counted, S is the area of
the plate, K is a factor related to exposure time; it is 1, 2, and 3 corresponding to 5, 10, and 15 min, respectively,
and 100 is a correlation factor to convert cm2 tom3.

2.4. Cell culture and virus preparation
Primary porcine alveolarmacrophages (PAMs)were collected from lung of 6–8week, 20–40 kg, and healthy
LargeWhite pigs. The alveolar cells were cultured in RPMImedia with 10% swine serum and 1%antibiotic. For
mono-layer cultures, alveolar cells were seeded in tissue culture plastic plates at about 4·105 cell cm−2. After 24 h
at 37 °C inmoist air with 5%CO2, non-adherent cells were removed bywashingwithmedium.

VNUA/HY-ASF1, a p72 genotype II virus originated from infected pigs in a farm inHungYen province,
Vietnam,whichwas extracted and cultured to a titer of 106HAD50 as reported in a previous work, was used for
this investigation [51].

2.5. Cell toxicity test
The SNP stock (500 ppm)was diluted to various concentrations ranging from0.024 ppm to 50 ppm to perform
the cell toxicity test. The PAMcell previously seeded in a 96-well plate was decanted to eliminate themedium
following by the addition of 50 μl diluted SNP solution and 50 μl RPMImedium to eachwell. Final SNP
concentration in the cell homogenate is calculated by dividing diluted SNP concentration added to thewell by 2
due to the (1:1) dilution. Afterward, the plate was incubated for about 1 h at 37 °C in 5%CO2 atmosphere and
then 200 μl freshmediumwas supplemented tomonitor the cell viability. The dead and alive cells were
determined by the identification of theirmorphological variation following the treatment with SNPs. The live
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ones appear in a clear and spherical shape as the ones in the control, while the dead ones are shrunk and
sometimes are in a non-spherical shape or broken up.

2.6. Viral inhibition test
In order to examine the inhibitory activity of SNPs on the virus, the highest non-toxic concentration of SNP
solutionwas selected andmixedwith virus supernatant at a volumetric ratio of 1:1. In a typical experiment, a
viruswith a titer of 106HAD50was diluted bymediumusing serial ten-fold dilutions prior tomixwith SNP
solution. The virus supernatant after beingmixedwith SNPswas kept at room temperature for 1 h for further
experiments. Experiments thenwere followed by the addition of 100 μl solution having both SNPs and virus at
different titers intowells containing cell after eliminatingmedium. The controls were prepared by growing cells
inmediumonly and by the addition of virus only. The plate was incubated at 37 °C in 5%CO2 for about 8 h for
the survived virus to replicate. Following the incubation, themixture of virus and SNPswas separated from the
cells andwashingwith PBS 1X solution and then 200 μlmediumwith the complement of porcine red blood cell
1%was added. Finally, the cells were incubated at 37 °C for 7 days and observed on amicroscope to evaluate
their growth based on their shape alteration and the characteristic rosette formation representing
haemadsorption of erythrocytes around infected cells. The antiviral activity of SNPswas determined based on
the viability of cells at the studied titer in the absence of cytopathic effect (CPE).

2.7. Characterization
Transmission electronmicroscopy (TEM)was performed using FEI Tecnai G2 at an acceleration voltage of
200 kV. Samples were first dispersed in ethanol, deposited on carbon film supported byCu grid, and then
mounted onTEM for analysis. The collected TEM images were used to analyze themorphology, particle sizes
and the nanostructure of SNPs. Themorphology of cells was observed on a LeicaDM IL LEDmicroscope (Leica
Microsystem). UV-Vis spectra were collected on aHitachi 5300 HUV-Vis spectrophotometer to observe the
formation of SNPs during synthetic process.

3. Results and discussion

TheAgNO3 solution turned yellow right after theNaBH4 solutionwas added indicating the possible formation
of SNPs. This phenomenon could relate to the characteristic surface Plasmon resonance of SNPs. The
characterization on theUV-Vis spectraphotometer revealed that the absorption reached amaximumat the
incident wavelength of 401 nm (figure 1(A)), which coincidedwith the surface Plasmon resonance of SNPs
reported inmany previous works [25, 54, 55]. The darkened solution observedwhen themoreNaBH4 solution
added is due to the increase in SNP concentration, which is proportional to the absorption intensity. This was
demonstrated in previous studies [56, 57] inwhich the evolution of SNPswasmonitored by usingUV-Vis
spectra collected at different reaction time. The position of absorption peakmay slight vary in different studies
due to the nanoparticle size and shape effects; however, this is a facilemethod for the initial and rapid evaluation
of SNP formation. To further confirm the presence of SNPs, high resolution TEM images (figure 1(B))were
taken for the analyses of their size, shape, and crystallinity. TEM image analysis revealed that the obtained
particles have spherical shapewith an approximate average diameter of 14 nm. These particles are highly

Figure 1.UV-Vis spectrum corresponding to the surface Plasmon resonance (A) andTEM image of the synthesized SNPs (B).
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crystallinewith a d spacing of 0.23 nm (figure 1(B) inset), corresponding to (111) plane ofmetallic silver. This
result demonstrated thatmetallic SNPs have been successfully synthesized and can be used for later experiments.

The antibacterial ability of synthesized SNPswas examined against Salmonella at different concentrations
from0.025 to 250 ppmand results are shown infigures 2 and 3. The control samplewithout adding of SNPs
contains 1.23×108 CFUml−1,meanwhile no bacteriumwas found in the sample treatedwith SNPs at the
concentration above 25 ppm (figure 2). As seen infigure 3, SNPs can inhibitmore than 95% salmonella at the
SNP concentration of 2.5 ppmand reach 100%at the SNP concentration of 25 ppm. The antibacterial efficiency
appeared to be concentration-dependent, which reduced from100% to 44.7% as SNP concentration decreased
from25 to 0.025 ppm, respectively. Themechanism that accounts for antibacterial property of SNPs are not
fully elucidated, but there is awide consensus that SNPs can inhibit bacteria through threemechanisms: (1)Ag+

ions disrupt ATPproduction andDNA replication, (2) SNPs andAg+ ions generate excess radical oxygen species
(ROS) that breakdownmembrane andmitochondrial function or causeDNAdamage, and (3) SNPs interact and
break bacterial cellmembrane [18]. The results revealed that SNPs is effective antibacterial agent and could be
potential disinfectant for anti-ASFV.

3.1. Cell toxicity
To evaluate the toxicity of SNPs on PAMcell, SNPs at various concentrations were added into thewells
containing cells to observe their growth. The layout of cell toxicity assay in a 96-well plate is depicted infigure 4.
Each column has 7wells for each SNP concentration (rowA toG) and the 8th well (rowH)was a blankwithout
SNPs for control. The toxic effect was observed at the SNP concentration of 1.56 ppmwith approximately 70%
cell deactivated. Above 1.56 ppm, SNPs show a high toxicity with 100% cells deactivated, while atmore diluted
concentration (�0.78 ppm), the toxic effect was not observedwith over 80%cell growing normally. The
observation onmicroscope (figure 5) showed that cells in the control sample have clear spherical shape, which is
similar to samples treatedwith SNP concentration of 0.78 ppm and below,meanwhile cells in samples treated

Figure 2.Antibacterial ability of SNPs against Salmonella; colonies from a control sample diluted at 106 times (A) and sample treated
with SNPs 25 ppmdiluted at 10 times (B), andmicrobial contamination tested by a settle platemethod; bacterial colonies grew on agar
plate exposed to the air for 10 min before (C) and after (D) sprayingwith SNPs 25 ppm.
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with SNPs 1.56 ppmand abovewere clearly broken up. This asserted that SNPs at the concentration of 0.78 ppm
and below are non-toxic to PAMcells.

The toxicity caused byAg+ has been investigated over past 50 years and itsmechanismhas beenwell known
with a general consensus thatmitochondria are primary target of Ag+.Mitochondria are vulnerable to the
‘permeability transition pathway’, which characterized by the formation of proteinaceous pores in
mitochondrialmembranes. The lowest level for Ag+ thatmay induce adverse effect inmammalian cells has been
observed are from222 to 362 mgAg K−1g−1-day [58]. The toxicity caused by SNPs is not similar to that by Ag+;
there are number of factors that enable SNPs to deliver toxic effects to cells and organism. SNPs can penetrate
cell walls andmembranes and then release intracellular Ag+. TheAg+here can directly interact withDNA
causing cytotoxic and genotoxic effects due to the disruption of cell transport and depletion of glutathione and
other anti-oxidants [59, 60]. The SNPs can stimulate the production of ROS and decrease the ATPproduction
causing oxidative stress and genotoxic effects. Sincemost of toxic effects occur intracellular, it is believed that the
toxicity of SNPs is size-dependent; which could bemore toxic in smaller size particles, particularly particles with
size�5 nm [61].

Figure 3.Antibacterial efficiency of SNPs against Salmonella.

Figure 4.A schematic layout of the cell toxicity assay. Each columnhas 7wells from rowA toG for each SNP concentration and the 8th

well in rowHwas for a control without SNPs. Red indicates high toxicity, which causes cell deactivation, yellow shows toxicity with
high ratio of cell deactivated, and green reveals safe SNP concentrationwithmore than 80%of cells alive.
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The toxicity of SNPs is concentration-dependent and its effectmay vary on the type of cells [59]. The viability
of RAW246.7 cell reduced 20%and 40%at SNPs concentration of 0.2 and 1.6 ppm, respectively [62]. The
toxicity also observed on rat liver cell line (BRL 3 A) at the SNPs concentration range of 1 to 25 ppm [63]. The
toxicity threshold of SNPsmeasured onHeLa andU937 cells is 2 ppm after 4 h treatment [64]. However, no
toxicity was found onHepG2 cell at SNPs concentration from0.01 to 5ppm [65].Microscopic observation on
porcine skin treatedwith SNPs for 14 days exhibited that their toxicity on porcine skin is a concentration-
dependent response [66]. A slight intracellular and intercellular epidermal edemawas found on the skin treated
with 0.34 ppmSNPs (20 nm in size) and a severe focal dermal inflammationwas observed as SNP concentration
increased to 34 ppm.Obviously, the toxicity of SNPs varies significantly with different cell lines, therefore,
depending on their application purposes; the toxicity threshold on involved cell lines should be investigated. In
this study, the observed toxicity threshold (0.78 ppm) allows us to further investigate the antiviral activity of
SNPs on the ASF viruswhile avoiding the damage of PAMcells.

3.2. Antivirus activity
Antiviral activity of SNPs onASFVwas investigated at the SNPs concentration of 0.78 ppm, the toxicity
threshold of SNPs. A schematic layout of antiviral experiment is exhibited infigure 6. Viruses were detected in all
dilutionswhen the initial virus homogenate was not treatedwith SNPs (green circles), whereas, no viruswas
found in the control without virus andwithout SNPs (Red circles). The differences can be seen in the sample
treatedwith SNPs 0.78 ppm.No viruswas detectedwhen the stock homogenate was diluted by 3 log and above
(Red circles), while it was observed in all dilutions below 2 log. These results indicated that ASFV at a titer of

Figure 5.Representative images of the control samplewith normal cells (a) and dead cells in sample treatedwith SNPs at 3.125 ppm
(b) Images were taken on a LeicaDM IL LEDmicroscope at amagnification of 200×.

Figure 6.A schematic layout of antiviral experiment. RowA, B, C,D correspond to a blank samplewith virus and no SNPs treatment
(A), a control without SNPs andwithout virus (B), and viral samples treatedwith SNPs 0.78 ppm (CandD), respectively. Columns
from 1 to 7 correspond to serial 10-fold dilution of virus homogenate at a titer of 106HAD50;minus numbers in circles represent to the
log of dilution. Green circles indicate live virus detected, while red circles indicate no live virus detected.
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�103HAD50 can be completely inhibited by the SNPs at the concentration of 0.78 ppm. Previous studies
revealed that the antiviral efficiency of SNPs is concentration-dependent [29, 33, 36, 43, 44], thus, their antiviral
efficiency can be higher as SNP concentration increased; however, it could bemore cytotoxic at higher
concentrations. Images of infected-cells and normal PAMcells are shown infigure 7.Obviously, without
treatmentwith SNPs, its virulent causes infection and death in PAMcells. As can be seen infigure 7(a), the cells
in the sample, where virus was not treatedwith SNPs 0.78 ppm, havemorphology altered and show the
erythrocyte adsorption around infected cells. The erythrocyte adsorption is due to the interaction between
erythrocytes and viral glycoprotein [67].Meanwhile, PAMcells were found live with round clear shapes and no
erythrocyte adsorption in blank and in virus homogenate diluted by�3 log following by the treatment with 0.78
ppmSNPs (figure 7(b)). The result further confirms the inhibitory ability of SNPs against ASFV.

According to previous studies, SNPs can interact with viral capsid gp120 glycoprotein, particularly the
glycoprotein knobs, themore exposed and accessible parts on viral capsid and thereby prevent the penetration
between virus and host cell and consequently induce an efficient inhibitory activity against viruses [29–31]. This
mechanism can explain for viral inhibitory effect on a number of viruses having glycoprotein on particle
membrane includingH1N1 influenzaA [29–31], H3N2 influenza viruses [32], and parainfluenza virus type 3
[38]. SNPs can also inhibit the formation of intracellular RNA and extracellular virions by interactionwithHBV
double-strandedDNAor viral particles [36]. ASFV is an envelopedDNAviruswith particles ranging from170 to
190 nm in diameter packedwithmore than 50 proteins including glycoprotein [67]. Therefore, it is likely that
SNPs can interact with these proteins, particularly glycoprotein on the exteriormembrane, preventing the virus
entry into cells or the virus replication and thereby cause the viral inhibition.

Since the viral inhibition is based on the interaction between SNPs and viral protein, the antiviral efficiency
depends significantly on the exposure of active sites on both viral particle and SNP. Accordingly, the size of SNPs
and the capping agent used during the synthesismay have important contribution on the antiviral efficacy of the
resulting SNPs. Gaikwad et al demonstrated that SNPswithmean diameter of 47 nmand 45 nmproduced by
fungies, Alternaria species and Phoma species, respectively, have low viral inhibition (between 0 and 40%),
meanwhile SNPs produced by F. oxysporum (24 nm) andC. Indicum (45 nm) have inhibitory efficiency up to
80% (F.Oxysporium) and 90% (C. Indicum) [38]. A higher antiviral activity against RSV can also be received
when SNPs stabilized by curcumin in comparedwith citric acid [34]. In this study, SNPs having an approximate
average diameter of 14 nm can completely inhibit ASFV at a titer of 103HAD50 in vitro. However, the antiviral
efficiency in reality can be greatly affected by contaminants existing in the environment. The adverse effect could
bemore serious when SNPs are applied for pig house facility cleaning and disinfection since there are a lot of
organic compounds from leftover food and pig excretion that could strongly interact with SNPs. To evaluate this
effect on the disinfection ability of SNPs in the pig house, SNPs solution 25 ppmhas been sprayed on the floor,
wall and partition of pig barn and then bacterial contamination in air before and after sprayingwasmonitored by
a passivemethod called settle plates [68]. Tests were conducted in 3 different barns for piglets, sows, and adult
pigs, respectively. Before spraying SNPs solution, bacteria growth on plates are somuch that could not be
counted as can be seen infigures 2(C) and (D), however, after sprayingwith SNPs solution, the average number
of bacteria on plates are 34, 95, and 813 cfu/plate corresponding to 2674, 5760, and 63914 cfu m−3 of air in barns
for sows, piglets, and adult pigs, respectively. The results revealed thatmicrobial contamination reduced

Figure 7.Representativemicroscopic images of PAMcells inoculatedwith ASFV (a) and PAMcells inoculatedwith ASFV treated in
0.78 ppmSNP solution for 1 h (b) Images were taken on LeicaDM IL LEDmicroscope at amagnification of 200×.

8

Mater. Res. Express 6 (2019) 1250g9 TNDTran et al



significantly after sprayingwith SNP solution 25 ppm. The higher numbers of bacteria received in piglets and
adult pig barns do notmean that the disinfection efficiency of SNPs reduced in those cases. It is likely that the
bacteria concentration in the air varywith the active level of pigs in the house; the pig activity creates and pumps
more aerosols with bacteria into the atmosphere. In sowbarn, each one is separated in a single partitionwith
very limited activity; it spendsmore time lying onfloor and therefore causes fewer aerosols with bacteria flushing
in the air. As a result, fewer bacteria are deposited on agar plates.Whereas, piglets and adult pigs are freelymoved
in barn space causingmore aerosols with bacteria supplying into the air and as consequence,more bacteria were
found deposited on agar plates. The obtained results confirmed that the disinfection activity of SNPs is not
significant influenced by contaminants remaining on thefloor.

SNPs have beenwidely used as an antibacterial agent inmany applications from textile industry, water
disinfection, food packaging tomedicine [19]. SNPs have some advantages compared to conventional
disinfectants. They have strong and long-lasting antibacterial activity against wide range ofmicrobes including
bacteria, fungi, and viruses. They can be easily incorporatedwith other substrates andmaterials; therefore, they
can be used in the formof liquid or solid. Thus, SNPs offer numerous applications water disinfection, air
filtration, surface disinfection, lotion or ointment for skin, pad or cloth forwound care. Thanks to a versatile
application and a long-lasting activity, SNPs can create an effective barrier to break the transmission of ASFV.
This suggests that SNPs could be a potential disinfectant and an effective tool to prevent the rapidwidespread
of ASFV.

4. Conclusion

This study demonstrated that SNPs are an effective disinfectant against both Salmonella andASFV. The
complete inhibition of the Salmonella bacteria andASFVwas observed at the SNP concentration of 25 and 0.78
ppm and at the bacterial concentration of 108CFUml−1 and viral titer of 103HAD50, respectively. SNPs do not
show cytotoxicity to the PAMcells at the concentration of 0.78 ppm. The results confirmed that SNPs have a
strong antiviral ability against ASFV and can be a promising tool tofight against the disease widespread.

To control thewidespread of ASFV, besides a demand for an effective vaccine, it requires the
implementation ofmany biosecuritymeasures to isolate the outbreak areas, to disinfect the infected areas, and to
create protective boundaries for uninfected areas. SNPs could have a great contribution in the implementation
of the biosecuritymeasures; however, the use of SNPs should be combinedwith existing preventivemeasures to
optimize the cost and their effectiveness. Therefore, further studies, particularly the field studies should be
carried out to achieve an effective combination of SNPswith existing preventivemeasures and to reduce the cost
of preventivemeasures.
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